p-group, metabelian, nilpotent (class 4), monomial
Aliases: C16⋊C22, C8.3D4, D16⋊2C2, C4.14D8, SD32⋊1C2, D8⋊2C22, C22.5D8, M5(2)⋊1C2, C8.10C23, Q16⋊2C22, C4○D8⋊2C2, (C2×D8)⋊10C2, (C2×C4).47D4, C4.11(C2×D4), C2.16(C2×D8), (C2×C8).23C22, 2-Sylow(PGammaL(2,49)), SmallGroup(64,190)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C16⋊C22
G = < a,b,c | a16=b2=c2=1, bab=a7, cac=a9, bc=cb >
Character table of C16⋊C22
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 8A | 8B | 8C | 16A | 16B | 16C | 16D | |
size | 1 | 1 | 2 | 8 | 8 | 8 | 2 | 2 | 8 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ12 | 2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ13 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ14 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ15 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ16 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)
(2 8)(3 15)(4 6)(5 13)(7 11)(10 16)(12 14)
(1 9)(3 11)(5 13)(7 15)
G:=sub<Sym(16)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14), (1,9)(3,11)(5,13)(7,15)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14), (1,9)(3,11)(5,13)(7,15) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)], [(2,8),(3,15),(4,6),(5,13),(7,11),(10,16),(12,14)], [(1,9),(3,11),(5,13),(7,15)]])
G:=TransitiveGroup(16,134);
C16⋊C22 is a maximal subgroup of
D16⋊C4
D8⋊D2p: D8⋊D4 D8⋊3D4 D8⋊D6 Q16⋊D6 D16⋊D5 D8⋊D10 D8⋊D14 Q16⋊D14 ...
D8.D2p: Q16.10D4 Q16.D4 C8.3D8 D48⋊C2 D8.D6 C16⋊D10 D8.D10 D112⋊C2 ...
D8p⋊C22: D16⋊C22 D4○D16 D4○SD32 C16⋊D6 D80⋊C2 C16⋊D14 ...
C16⋊C22 is a maximal quotient of
C23.39D8 C23.40D8 M5(2)⋊1C4 SD32⋊3C4 D16⋊4C4 D8⋊7D4 D8⋊2D4 D8⋊Q8 C4.Q32 D8.Q8 C23.49D8 C23.19D8 C23.51D8 C8.12SD16 C8.13SD16 C16⋊Q8
C16⋊D2p: C16⋊D4 C16⋊2D4 C16⋊3D4 C16⋊D6 D8⋊D6 D48⋊C2 D80⋊C2 D16⋊D5 ...
D8.D2p: D8.9D4 D8.5D4 D8.D6 D8.D10 D8.D14 ...
Q16⋊D2p: D8⋊8D4 Q16⋊2D4 Q16⋊D6 D8⋊D10 Q16⋊D14 ...
Matrix representation of C16⋊C22 ►in GL4(𝔽7) generated by
0 | 5 | 3 | 6 |
5 | 2 | 5 | 0 |
1 | 3 | 1 | 4 |
5 | 5 | 2 | 4 |
0 | 4 | 0 | 1 |
4 | 1 | 0 | 4 |
4 | 4 | 1 | 6 |
6 | 3 | 0 | 5 |
1 | 0 | 6 | 3 |
0 | 2 | 3 | 2 |
0 | 3 | 2 | 2 |
0 | 1 | 1 | 2 |
G:=sub<GL(4,GF(7))| [0,5,1,5,5,2,3,5,3,5,1,2,6,0,4,4],[0,4,4,6,4,1,4,3,0,0,1,0,1,4,6,5],[1,0,0,0,0,2,3,1,6,3,2,1,3,2,2,2] >;
C16⋊C22 in GAP, Magma, Sage, TeX
C_{16}\rtimes C_2^2
% in TeX
G:=Group("C16:C2^2");
// GroupNames label
G:=SmallGroup(64,190);
// by ID
G=gap.SmallGroup(64,190);
# by ID
G:=PCGroup([6,-2,2,2,-2,-2,-2,121,650,579,297,165,1444,730,88]);
// Polycyclic
G:=Group<a,b,c|a^16=b^2=c^2=1,b*a*b=a^7,c*a*c=a^9,b*c=c*b>;
// generators/relations
Export
Subgroup lattice of C16⋊C22 in TeX
Character table of C16⋊C22 in TeX